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Multi-Component Matrix KP Hierarchies as Symmetry-Enhanced Scalar KP
Hierarchies and Their Darboux-Bäcklund Solutions

H. Aratyn1, E. Nissimov2,3 and S. Pacheva2,3

Abstract

We show that any multi-component matrix KP hierarchy is equivalent to the standard one-
component (scalar) KP hierarchy endowed with a special infinite set of abelian additional sym-
metries, generated by squared eigenfunction potentials. This allows to employ a special version
of the familiar Darboux-Bäcklund transformation techniques within the ordinary scalar KP
hierarchy in the Sato formulation for a systematic derivation of explicit multiple-Wronskian
tau-function solutions of all multi-component matrix KP hierarchies.

1991 Mathematics Subject Classification, Primary 58F07, Secondary 35Q55

1. Introduction. Background on the KP Hierarchy and Ghosts Symmetries.
Multi-component generalizations of Kadomtsev-Petviashvili (KP) hierarchy of integrable non-

linear soliton equations [1] attract a lot of interest both from physical and mathematical point of
view. They are known to contain such physically relevant nonlinear integrable systems as Davey-
Stewartson, two-dimensional Toda lattice and three-wave resonant interaction ones [2]. On the other
hand, multi-component KP hierarchies turn out to be intimately connected to classical geometry
of conjugate nets and the classification problem of Hamiltonian systems of hydrodynamical type
[3].

There exist several equivalent formulations of multi-component KP hierarchies: matrix pseudo-
differential operator (Sato) formulation; tau-function approach via matrix Hirota bilinear identi-
ties; multi-component free fermion formulation. Here we will offer yet another approach. Namely,
we will show that any multi-component N×N matrix KP hierarchy [1] is equivalent to the stan-
dard one-component (scalar) KP hierarchy endowed with N −1 copies of mutually commuting
infinite-dimensional algebras of abelian additional (“ghost”) symmetries, generated by squared
eigenfunction potentials of the initial hierarchy (see definition in (7) below). The latter “ghost”
symmetry enhanced scalar KP hierarchy will be called “multiple-KP hierarchy”. The principal
advantage of multiple-KP hierarchy formulation over the standard Sato matrix pseudo-differential
operator formulation lies in the fact that the former allows to use a special version of the well-known
Darboux-Bäcklund (DB) transformation techniques within the ordinary scalar KP hierarchy in the
Sato formulation for a systematic derivation of soliton-like multiple-Wronskian tau-function solu-
tions of the multi-component KP hierarchies (Section 5 below).

The starting point of our presentation is the pseudo-differential Lax operator L of scalar KP
hierarchy obeying KP evolution equations w.r.t. the multi-time (t) ≡ (t1 ≡ x, t2, . . .) (for notations
and review, see [4]) :

L = D +
∞∑
i=1

uiD
−i ;

∂L
∂tl

=
[ (
Ll
)

+
, L

]
, l = 1, 2, . . . (1)
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e-mail: aratyn@uic.edu
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3Department of Physics, Ben-Gurion University of the Negev, Box 653, IL-84105 Beer Sheva, Israel; e-mail:
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The symbol D stands for the differential operator ∂/∂x, whereas ∂ ≡ ∂x will denote derivative of a
function. The subscripts (±) indicate purely differential/pseudo-differential part of the correspond-
ing operator. Equivalently, one can represent Eq.(1) in terms of the dressing operator W whose
pseudo-differential series are expressed in terms of the so called tau-function τ(t) :

L = WDW−1 ,
∂W

∂tl
= −

(
Ll
)
−
W , W =

∞∑
n=0

pn (−[∂]) τ(t)

τ(t)
D−n (2)

with the notation: [y] ≡ (y1, y2/2, y3/3, . . .) for any multi-variable (y) ≡ (y1, y2, y3, . . .), in particular
(∂) ≡ (∂/∂t1, ∂/∂t2, . . .), and with pk(y) being the Schur polynomials. The tau-function is related
to the Lax operator as (below “Res” denotes the coefficient in front of D−1) :

∂x
∂

∂tl
ln τ(t) = ResLl , τ(t) −→ τ(t) e

∑∞
l=1

cl tl (3)

The second relation (3) tells that τ(t) is defined up to an exponential linear w.r.t. (t).
In the present approach a basic notion is that of (adjoint) eigenfunctions (EF’s) Φ(t), Ψ(t) of

the scalar KP hierarchy satisfying :

∂Φ

∂tk
= Lk+(Φ) ;

∂Ψ

∂tk
= − (L∗)k+ (Ψ) (4)

Throughout this paper we will rely on an important tool provided by the spectral representation
of EF’s [5]. The spectral representation is equivalent to the following statement: Φ and Ψ are
(adjoint) EF’s if and only if they obey the integral representation:

Φ(t) =

∫
dz

eξ(t−t
′,z)

z

τ(t− [z−1])τ(t′ + [z−1])

τ(t)τ(t′)
Φ
(
t′ + [z−1]

)
(5)

Ψ(t) =

∫
dz

eξ(t
′−t,z)

z

τ(t+ [z−1])τ(t′ − [z−1])

τ(t)τ(t′)
Ψ(t′ − [z−1]) (6)

where
∫
dz denotes normalized contour integral around origin.

Further crucial notion to be employed in the present construction is the so called squared
eigenfunction potential (SEP) S (Φ,Ψ) of arbitrary pair of an EF Φ and an adjoint EF Ψ [9] (cf.
also [5]) :

S (Φ,Ψ) = ∂−1(Φ Ψ) ,
∂

∂tn
S (Φ(t),Ψ(t)) = Res

(
D−1Ψ(Ln)+ΦD−1

)
, n = 1, 2, . . . (7)

The flow equations above fix the ambiguity in applying the inverse derivative ∂−1 in the SEP
definition up to an overall trivial constant. In what follows ∂−1will appear always in the form of
SEP’s (first Eq.(7)).

Consider now an infinite system of independent (adjoint) EF’s {Φj ,Ψj}∞j=1 of the standard
one-component KP hierarchy Lax operator L and define the following infinite set of the additional
“ghost” symmetry flows [6]:

∂

∂t̄s
L =

[
Ms , L

]
, Ms =

s∑
j=1

Φs−j+1D
−1Ψj (8)

∂

∂t̄s
Φk =

s∑
j=1

Φs−j+1∂
−1(ΨjΦk)− Φk+s ;

∂

∂t̄s
Ψk =

s∑
j=1

Ψj∂
−1(Φs−j+1Ψk) + Ψk+s (9)
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∂

∂t̄s
F =

s∑
j=1

Φs−j+1∂
−1(FΨj) ;

∂

∂t̄s
F ∗ =

s∑
j=1

Ψj∂
−1(Φs−j+1F

∗) (10)

where s, k = 1, 2, . . . , and F, F ∗ denote generic (adjoint) EF’s which do not belong to the “ghost”
symmetry generating set {Φj ,Ψj}∞j=1.

Transformations in (8)-(10) contain terms in a∂−1b, whose study was initiated in [7] and ex-
ploited in [8] in which inhomogeneous terms in symmetry transformations appeared in the particular
case of constrained KP hierarchies.

It is easy to show that the “ghost” symmetry flows ∂/∂t̄s from Eqs.(8)-(10) commute, namely,
that the ∂-pseudo-differential operators Ms (8) satisfy the zero-curvature equations: ∂Mr/∂t̄s −
∂Ms/∂t̄r − [Ms ,Mr ] = 0.

Let us consider the (adjoint)-EF Eqs.(4) for k=2 and Φ=Φ1, Ψ=Ψ1 (the pair generating the
lowest s = 1 “ghost” symmetry flows (8)–(10)) together with their s = 2 “ghost” symmetry flow
Eqs.(9) (i.e., s=2, k=1). The latter system can be written in the form:

∂

∂t2
Φ1 =

(
∂2 + 2u1

)
Φ1 ,

∂

∂t̄2
Φ1 =

[
−∂̄2 + 2∂̄

(
∂−1(Φ1Ψ1)

)]
Φ1 (11)

∂

∂t2
Ψ1 = −

(
∂2 + 2u1

)
Ψ1 ,

∂

∂t̄2
Ψ1 =

[
∂̄2 − 2∂̄

(
∂−1(Φ1Ψ1)

)]
Ψ1 (12)

where ∂̄ ≡ ∂/∂t̄1. Introducing new notations: Q ≡ u1 − 2 (Φ1Ψ1) − ∂̄
(
∂−1(Φ1Ψ1)

)
; −iT =

t2 − t̄2 , X = t1 + t̄1 , Y = t1 − t̄1, the system (11)–(12) acquires the following form:

i∂TΦ1 =
(
∂2
X + ∂2

Y

)
Φ1 + 2 (Φ1Ψ1) Φ1 +QΦ1 ,

(
∂2
X − ∂2

Y

)
Q+ 4∂2

X (Φ1Ψ1) = 0 (13)

−i∂TΨ1 =
(
∂2
X + ∂2

Y

)
Ψ1 + 2 (Φ1Ψ1) Ψ1 +QΨ1 (14)

which is nothing but the standard Davey-Stewartson (DS) system [2]1. Thus, we succeeded to
express solutions of DS system in terms of a pair of (adjoint) EF’s of ordinary one-component KP
hierarchy supplemented with two additional “ghost” symmetry flows ( ∂

∂t̄1
and ∂

∂t̄2
in the notations

of (8)–(9)).
Consider now the τ -function of L (2) and let us act with ∂

∂t̄s
on both sides of (3) obtain-

ing ∂
∂t̄s

ln τ = −
∑s
j=1 ∂

−1(Φs−j+1Ψj) where we used (8) as well as the tr-flow eqs. ∂
∂tr
Ms =[

Lr+ ,Ms

]
−

. With the help of the well-known recurrence relation for the Schur polynomials:

sps
(
−[∂̄]

)
=
∑s
k=1

(
− ∂
∂t̄k

)
ps−k

(
−[∂̄]

)
, we find the following important identities [6, 11] relating

the tau-function with the “ghost” symmetry generating (adjoint) EF’s (here s, k, j = 1, 2, . . .):

ps
(
−[∂̄]

)
(Φ1τ)

τ
= Φs+1 ,

ps
(
[∂̄]
)

(Ψ1τ)

τ
= Ψs+1 ; ∂−1(ΦkΨj) =

j−1∑
l=0

pk+l(−[∂̄]) pj−l+1([∂̄]) τ

τ

(15)
2. Double-KP System and Its Equivalence to Two-Component KP Hierarchy

In refs.[6, 11] we have shown that the “ghost” symmetry flows from Eqs.(8)-(10) admit their
own Lax representation in terms of a D̄ ≡ ∂/∂x̄ ≡ ∂/∂t̄1 pseudo-differential Lax operator L̄ w.r.t.

1The fact that DS system is contained within the “ghost” symmetry enhanced scalar KP hierarchy (1)–(2),(8)–(9)
was first pointed out in [10].
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multi-time (t̄) ≡ (t̄1 ≡ x̄, t̄2, . . .) :

L̄ ≡ W D̄W−1
= D̄ +

∞∑
i=1

ūiD̄
−i ,

∂L̄
∂t̄s

=
[
L̄s+ , L̄

]
(16)

W = 1 +
∞∑
j=1

pj(−[∂̄])τ(t, t̄)

τ(t, t̄)
D̄−j ,

pj(−[∂̄])τ

τ
= ∂−1(ΦjΨ1) (17)

where Φj , Ψ1 are the “ghost” symmetry generating (adjoint) EF’s of the original KP hierarchy
(1), which we denote as KP1. Accordingly, we will denote the “ghost”KP system (16)–(17) as KP2.
Let us stress that the tau-function τ = τ(t, t̄) of the KP1 hierarchy (1)–(2), with time evolution
parameters (t) and (t̄) = fixed, is simultaneously tau-function of KP2 hierarchy (16)–(17) with
time evolution parameters (t̄) and (t) = fixed.

Next, we have found an infinite system of (adjoint) EF’s
{
Φ̄k, Ψ̄k

}∞
k=1 of KP2 system (i.e.,

obeying Eqs.(4) with all quantities replaced with the “barred” ones) :

Φ̄k =
pk−1(−[∂]) (Ψ1τ)

τ
, Ψ̄k =

pk−1([∂]) (Φ1τ)

τ
(18)

which generate “ghost” symmetry flows for KP2 (16) analogous to (8)–(10) such that the corre-
sponding “ghost” symmetry flow parameters coincide with the isospectral flow parameters (t) of
the original KP1 system (1). In particular, we note from Eqs.(18) that Φ̄1 = Ψ1 and Ψ̄1 = Φ1. Also,
for any generic (adjoint) EF’s F , F ∗ of KP1 the SEP functions:

F̄ ≡ ∂−1(F Ψ1) , F̄ ∗ ≡ ∂−1(Φ1F
∗) (19)

are, respectively, an EF and adjoint EF of KP2 [6, 11].
Both KP1 (original KP hierarchy) together with KP2 (“ghost” symmetry flows’ KP hierarchy)

form a new larger hierarchy called double-KP [6, 11] possessing the property of “duality” symmetry,
i.e., symmetry under interchanging the rôles of KP1 and KP2. It is defined as follows:

(t) ≡ (
(1)
t ) , (t̄) ≡ (

(2)
t ) , (

(α)
t ) = (

(α)
t1 ,

(α)
t2 , . . .) , L ≡

(1)

L , L̄ ≡
(2)

L (20)

(α)

L=
(α)

W
(α)

D

(α)

W−1 ,
(α)

W=
∞∑
j=0

pj(−[
(α)

∂ ])τ

τ

(α)

D−j ,
(α)

D≡ ∂/∂
(α)
t1 (21)

Φj(t, t̄) ≡
(12)

Φj (
(1)
t ,

(2)
t ) , Ψj(t, t̄) ≡

(12)

Ψj (
(1)
t ,

(2)
t ) , Φ̄j(t, t̄) ≡

(21)

Φj (
(1)
t ,

(2)
t ) , Ψ̄j(t, t̄) ≡

(21)

Ψj (
(1)
t ,

(2)
t ) (22)

(αβ)

Φj = εαβ
pj−1(−[

(β)

∂ ])ταβ
τ

,
(αβ)

Ψj = εβα
pj−1([

(β)

∂ ])τβα
τ

, εαβ = ±1 for α ≤ β , α > β (23)

where in (23) we have introduced new tau-functions:

ταβ = εαβ τ
(αβ)

Φ1 = εβα τ
(βα)

Ψ1 (24)

Here the indices (α, β) are taking values α, β = 1, 2 , α 6= β , and Eqs.(15),(18) have been taken
into account.
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Accordingly, Eqs.(1),(16),(4),(8)–(10) and their “duals” (for Φ̄k, Ψ̄k) can be rewritten in a
manifestly “duality”-symmetric form:

(α)

∂s
(α)

L=
[ ((α)

L
)s

+
,

(α)

L
]

,
(β)

∂s
(α)

L=
[ (αβ)

Ms ,
(α)

L
]

,
(α)

∂s≡
∂

∂
(α)
ts

,
(αβ)

Ms≡
s∑
j=1

(αβ)

Φs−j+1

(α)

D−1
(αβ)

Ψj (25)

(α)

∂s
(αβ)

Φk =
((α)

L
)s

+
(
(αβ)

Φk ) ,
(α)

∂s
(α)

F =
((α)

L
)s

+
(

(α)

F ) ;
(α)

∂s
(αβ)

Ψk = −
((α)

L∗
)s

+
(
(αβ)

Ψk ) ,
(α)

∂s
(α)

F ∗= −
((α)

L∗
)s

+
(

(α)

F ∗)

(26)
(β)

∂s
(αβ)

Φk =
s∑
j=1

(αβ)

Φs−j+1

(α)

∂−1
((αβ)

Ψj

(αβ)

Φk

)
−

(αβ)

Φk+s ,
(β)

∂s
(αβ)

Ψk =
s∑
j=1

(αβ)

Ψj

(α)

∂−1
((αβ)

Φs−j+1

(αβ)

Ψk

)
+

(αβ)

Ψk+s (27)

(β)

∂s
(α)

F =
s∑
j=1

(αβ)

Φs−j+1

(α)

∂−1
((αβ)

Ψj

(α)

F
)

,
(β)

∂s
(α)

F ∗=
s∑
j=1

(αβ)

Ψj

(α)

∂−1
((αβ)

Φs−j+1

(α)

F ∗
)

(28)

where again α, β = 1, 2 , α 6= β ,
(α)

∂−1≡ (
(α)

∂1)−1 and s = 1, 2, . . . . In (28) and (26)
(α)

F ,
(α)

F ∗ denote

generic (adjoint) EF’s of
(α)

L , i.e., such that they do not belong to the sets {
(αβ)

Φk ,
(αβ)

Ψk }.
In [11] we have shown the equivalence of double-KP hierarchy with the two-component (matrix)

Sato KP hierarchy [1], originally formulated within the matrix pseudo-differential Lax formalism,
which can be equivalently described by three tau-functions τ11, τ12, τ21 depending on two sets of
multi-time variables (t), (t̄) and obeying the 2×2 matrix Hirota bilinear identities (see Eq.(29)
below). The proof proceeds by identifying two-component KP tau-functions with the tau-functions
of double-KP hierarchy τ11 = τ, τ12 = τΦ1, τ21 = −τΨ1 as in (21)–(24).

3. Generalization to Multi-Component KP Hierarchies
Let us turn our attention to arbitrary N -component matrix KP hierarchies [1] (N ≥ 2). They

can be equivalently characterized by the set of Hirota bilinear identities:

N∑
γ=1

εαγ εβγ

∫
dz zδαγ+δβγ−2 eξ(

(γ)

t −
(γ)

t′ ,z)ταγ(. . . ,
(γ)
t −[z−1], . . .) τγβ(. . . ,

(γ)

t′ +[z−1], . . .) = 0 (29)

for N(N − 1) + 1 tau-functions ταα≡τ and ταβ (α 6=β), where now the indices α, β, γ = 1, . . . , N ,
δαβ are Kronecker symbols and εαβ are the same as in (22). Also, we are using the standard notation
ξ(t, z) ≡

∑∞
l=1 tlz

l. Let us recall that (29) contain the following interesting systems of non-linear
equations:

(α)

∂1

(β)

∂1 ln τ =
ταβ
τ

τβα
τ

,
(γ)

∂1

(
ταβ
τ

)
= εαβ εαγ εγβ

ταγ
τ

τγβ
τ

, α 6= β 6= γ (30)

the second one being the so called N ′-wave system (N ′ = N(N − 1)/2).
Our main statement is that N -component KP hierarchy defined by (29) is equivalent to the

multiple-KP hierarchy defined by Eqs.(21),(23)–(28) where now the indices α, β take values α, β =
1, . . . , N . In other words, this multiple-KP hierarchy consists of N ordinary one-component KP

hierarchies KPα (α= 1, . . . , N) given by Lax operators
(α)

L (21) in different spaces and generating

isospectral flows
(α)

∂s w.r.t. different sets of evolution parameters (
(α)
t ), such that the flows

(α)

∂s act on
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the rest of KP subsystems KPβ (β 6=α) as “ghost” symmetry flows. In particular, Eqs.(28) apply

also for
(α)

F=
(αγ)

Φk and
(α)

F ∗=
(αγ)

Ψk with γ 6=β 6=α :

(β)

∂s
(αγ)

Φk =
s∑
j=1

(αβ)

Φs−j+1

(α)

∂−1
((αβ)

Ψj

(αγ)

Φk

)
,

(β)

∂s
(αγ)

Ψk =
s∑
j=1

(αβ)

Ψj

(α)

∂−1
((αβ)

Φs−j+1

(αγ)

Ψk

)
(31)

since
(αγ)

Φk ,
(αγ)

Ψk are generic (adjoint) EF’s of
(α)

L w.r.t. “ghost” symmetry flows
(β)

∂s when γ 6=β 6=α.
The detailed proof follows closely the pattern of the proof for the N = 2 component KP case

[11], making heavy use of the spectral representation identities (5)–(6), and will be given in a
separate paper.

Here we will only present an additional important property of multiple-KP system (21),(23)–
(28),(31), which appears only in the N ≥ 3 cases. Namely, for any α 6=β 6=γ the following identities
hold among (adjoint) EF’s:

(γ)

∂1

(αβ)

Φk =
(αγ)

Φ1

(γβ)

Φk ,
(γ)

∂1

(αβ)

Ψk =
(αγ)

Ψ1

(γβ)

Ψk (32)

In particular, taking k=1 in the first Eq.(32) and taking into account (24), we see that the latter
coincides with the N ′-wave system (30). In other words, the N ′-wave system is reformulated entirely
in terms of EF’s of an underlying “ghost” symmetry enhanced ordinary KP hierarchy. Moreover,
it is easy to check that (32) are compatible with the “ghost” flow Eqs.(31), and in fact (32) are
equivalent to (31).

4. Darboux-Bäcklund Orbits of Multi-Component KP Hierarchies
We will consider DB transformations in their form appropriate for the Sato formulation of KP

hierarchies [9]. Namely, DB transformations are pseudo-differential operator “gauge” transforma-
tions of the pertinent Lax operators given in terms of (adjoint) EF’s (4).

Let us temporarily return to the simpler case of double-KP hierarchy. In our construction a
very instrumental rôle will be played by the following non-standard orbit of successive DB trans-

formations for the original KP1 system (1) (L ≡ L(n) ,
(12)

Φj≡ Φj ≡ Φ
(n)
j , etc.) :

L(n+ 1) = T (n)L(n)T−1(n) , T (n) = Φ1DΦ−1
1 ≡ Φ

(n)
1 DΦ

(n)
1

−1
(33)

Φ
(n+1)
l = Φ

(n)
1 ∂

Φ
(n)
l+1

Φ
(n)
1

 , l ≥ 1 ; Ψ
(n+1)
1 =

1

Φ
(n)
1

, Ψ
(n+1)
j = − 1

Φ
(n)
1

∂−1
(
Φ

(n)
1 Ψ

(n)
j−1

)
, j ≥ 2

(34)

F (n+1) = Φ
(n)
1 ∂

(
F (n)

Φ
(n)
1

)
, F ∗(n+1) = − 1

Φ
(n)
1

∂−1
(
Φ

(n)
1 F ∗(n)

)
(35)

for transformations in “positive” direction, as well as adjoint DB transformations, i.e., transforma-
tions in “negative” direction:

L(n− 1) = T̂ ∗−1(n)L(n)T̂ ∗(n) , T̂ (n) = Ψ1DΨ−1
1 ≡ Ψ

(n)
1 DΨ

(n)
1

−1
(36)

Φ
(n−1)
1 =

1

Ψ
(n)
1

, Φ
(n−1)
l =

1

Ψ
(n)
1

∂−1
(
Ψ

(n)
1 Φ

(n)
l−1

)
, l ≥ 2 ; Ψ

(n−1)
j = −Ψ

(n)
1 ∂

Ψ
(n)
j+1

Ψ
(n)
1

 , j ≥ 1

(37)
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F (n−1) =
1

Ψ
(n)
1

∂−1
(
Ψ

(n)
1 F (n)

)
, F ∗(n−1) = −Ψ

(n)
1 ∂

(
F ∗(n)

Ψ
(n)
1

)
(38)

In what follows, the DB “site” index (n) will be skipped for brevity whenever this would not lead to
ambiguities. Note that under the above DB transformations, the tau-function τ ≡ τ (n) transforms

as: τ (n+1) = Φ1τ ≡ Φ
(n)
1 τ (n) , τ (n−1) = −Ψ1τ ≡ −Ψ

(n)
1 τ (n).

Remark. Let us stress the non-canonical form of the (adjoint) DB transformations (34),(37) on
the “ghost” symmetry generating (adjoint) EF’s. On the other hand, for generic (adjoint) EF’s
F, F ∗ the (adjoint) DB transformations (35),(38) read as usual [9].

The crucial property of the above DB orbit of the original one-component KP1 hierarchy is
that it induces an orbit of DB transformations for the whole double-KP system (21)–(28). More
precisely, as shown in [6, 11], “ghost” symmetries (8) commute with DB transformations (33)–(38)
of the KP1 hierarchy, and induce the following DB transformations on the “ghost” KP2 hierarchy

(recall from Eqs.(18), that Φ̄
(n)
1 = Ψ

(n)
1 , Ψ̄

(n)
1 = Φ

(n)
1 ) :

L̄(n+ 1) =

(
1

Ψ̄
(n)
1

D̄−1Ψ̄
(n)
1

)
L̄(n)

(
1

Ψ̄
(n)
1

D̄Ψ̄
(n)
1

)
, L̄(n−1) =

(
Φ̄

(n)
1 D̄

1

Φ̄
(n)
1

)
L̄(n)

(
Φ̄

(n)
1 D̄−1 1

Φ̄
(n)
1

)
(39)

Φ̄
(n−1)
j = Φ̄

(n)
1 ∂̄

 Φ̄
(n)
j+1

Φ̄
(n)
1

 , j ≥ 1 ; Ψ̄
(n−1)
1 =

1

Φ̄
(n)
1

, Ψ̄
(n−1)
l = − 1

Φ̄
(n)
1

∂̄−1
(
Φ̄

(n)
1 Ψ̄

(n)
l−1

)
, l ≥ 2 (40)

F̄ (n−1) = Φ̄
(n)
1 ∂̄

(
F̄ (n)

Φ̄
(n)
1

)
, F̄ ∗ (n−1) = − 1

Φ̄
(n)
1

∂̄−1
(
Φ̄

(n)
1 F̄ ∗ (n)

)
(41)

Φ̄
(n+1)
1 =

1

Ψ̄
(n)
1

, Φ̄
(n+1)
l =

1

Ψ̄
(n)
1

∂̄−1
(
Ψ̄

(n)
1 Φ̄

(n)
l−1

)
, l ≥ 2; Ψ̄

(n+1)
j = −Ψ̄

(n)
1 ∂̄

Ψ̄
(n)
j+1

Ψ̄
(n)
1

 , j ≥ 1 (42)

F̄ (n+1) =
1

Ψ
(n)
1

∂̄−1
(
Ψ

(n)
1 F̄ (n)

)
, F̄ ∗ (n+1) = −Ψ

(n)
1 ∂̄

(
F̄ ∗ (n)

Ψ
(n)
1

)
(43)

where F̄ , F̄ ∗ are generic (adjoint) EF’s of L̄. For each DB “site” (n) the corresponding Lax operators
and (adjoint) EF’s from (33)–(43) define a double-KP system as in (21)–(28). Therefore, the DB
orbit (33)–(43) defines an orbit of DB transformations for the associated two-component (matrix)
KP hierarchy.

One can prove a similar statement also for generic DB transformations of KP1 hierarchy:

L̃ =
(
F DF−1

)
L
(
F D−1F−1

)
, Φ̃j = F∂

(
Φj

F

)
, Ψ̃j = − 1

F
∂−1(F Ψj) (44)

L̂ =
(
F ∗−1D−1F ∗

)
L̂
(
F ∗−1DF ∗

)
, Φ̂j =

1

F ∗
∂−1(F ∗Φj) , Ψ̂j = −F ∗∂

(
Ψj

F ∗

)
(45)

where F, F ∗ are generic (adjoint) EF’s of L, namely, the “ghost” symmetries (8) commute with
generic DB transformations (44)–(45).

Remark. Comparing (33)–(35) with (39),(42)–(43), and (36)–(38) with (39)–(41), we find that
DB transformations of KP1 hierarchy w.r.t. Φ1 corresponds to adjoint-DB transformations of KP2

hierarchy w.r.t. Ψ̄1, and vice versa.
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Let us now go back to the general N -component KP hierarchy. Picking up any pair KPα and
KPβ (with α 6=β) of one-component KP subsystems of multiple-KP hierarchy (25)–(28) and (31), we

can construct a DB orbit w.r.t.
(αβ)

Φ1 for this pair as in (33)–(35),(40),(42)–(43) by literally repeating

the above construction with the identifications: L≡
(α)

L , L̄≡
(β)

L , Φj≡
(αβ)

Φj , Ψj≡
(αβ)

Ψj , F ≡
(αγ)

Φk , F
∗≡

(αγ)

Ψk ,

Φ̄j ≡
(βα)

Φj , Ψ̄j ≡
(βα)

Ψj , F̄ ≡
(βγ)

Φk , F̄
∗ ≡

(βγ)

Ψk , where γ 6= α 6= β. Hence such DB orbit, which we will call
DB(αβ) orbit, preserves the whole multiple-KP hierarchy. Also, according to the last Remark in

Section 3, DB(αβ) orbit is equivalent to adjoint-DB(βα) orbit, i.e., the DB orbit w.r.t.
(βα)

Ψ1 . Then,
a general DB orbit preserving multiple-KP hierarchy, or equivalently, N -component matrix KP
hierarchy, is obtained by combining the DB(αβ) orbits for all pairs (α, β) with α 6=β.

We are particularly interested in DB orbits passing through the “free” N -component KP hier-

archy, i.e., with
(α)

L=
(α)

D and hence τ=const in (21). Then one can easily show that the general DB
orbit DB(12,13,...,1N) for the N -component KP hierarchy passing through the “free” one is built up
from a union of DB(1β) orbits of the form (34)–(35),(42)–(43) with β=2, . . . , N . Accordingly, it is

labelled by the set of integers (n12, n13, . . . , n1N ;m) indicating n12 DB iterations w.r.t.
(12)

Φ1 or |n12|

adjoint-DB iterations w.r.t.
(12)

Ψ1 for n12<0, n13 DB iterations w.r.t.
(13)

Φ1 or |n13| adjoint-DB itera-

tions w.r.t.
(13)

Ψ1 for n13<0, etc., whereas the last integer indicates m steps of DB transformations

w.r.t. generic EF’s
(1)

F 1, . . . ,
(1)

F m of KP1 subsystem, i.e., such that they do not belong to any of the

“ghost” symmetry generating sets of
(1β)

Φk .

5. Darboux-Bäcklund Solutions
Taking into account relations (24) and the structure of the DB(1β) suborbits (β=2, . . . , N) of the

form (34)–(35),(42)–(43) allows us to express all non-diagonal tau-functions of the N -component
KP hierarchy on any site (n12, n13, . . . , n1N ;m) of the full orbit DB(12,13,...,1N) in terms of DB shifts
of the diagonal tau-function as follows (from now on we will use the shortened notations n1α ≡ nα):

τ
(...,nα,...)
1α = ηατ

(...,nα+1,...) , τ
(...,nα,...)
α1 = −ηατ (...,nα−1,...) (46)

τ
(...,nα,...,nβ ,...)
αβ = ηαηβτ

(...,nα−1,...,nβ+1,...) , τ
(...,nα,...,nβ ,...)
βα = ηαηβτ

(...,nα+1,...,nβ−1,...) (47)

where ηα ≡ sign(nα) and 1<α<β ≤N . Since τ is the tau-function of scalar KP1 sub-hierarchy,
the problem of finding the complete DB solution of the full N -component KP hierarchy is reduced
to applying the well-known techniques of (adjoint) DB iterations in ordinary one-component KP
hierarchy within the Sato/tau-function formulation. Using the above techniques and taking into
account the specific form of DB orbits (34)–(35) and (37)–(38), we obtain (assuming explicitly that
part of the DB iterations are adjoint-DB ones) the following Wronskian-type expression for the
diagonal tau-function:

τ (−n2,...,−nk,nk+1,...,nN ;m)/τ (0,...,0;0) = (−1)
∑k

j=2
nj−1 × (48)

W̃
[(1,k+1)

Φ 1, . . . ,
(1,k+1)

Φ nk+1
, . . . ,

(1N)

Φ1 , . . . ,
(1N)

Φ nN ,
(1)

F 1, . . . ,
(1)

F m;
(12)

Ψ1, . . . ,
(12)

Ψn2 , . . . ,
(1k)

Ψ1 , . . . ,
(1k)

Ψnk

]
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with the short-hand notation for Wronskian-type determinants:

W̃ [f1, . . . , fk; f
∗
1 , . . . , f

∗
l ] ≡ det

∥∥∥∥∥∥∥
(1)

∂ a−1fb
(1)

∂ a−1fk−l+d
(1)

∂−1 (fbf
∗
c )

(1)

∂−1 (fk−l+df
∗
c )

∥∥∥∥∥∥∥ , a, b=1, . . . , k−l ; c, d=1, . . . , l

(49)
Recalling property (19) and the “ghost” symmetry flow Eqs.(27),(10) and (32), we find that we can
replace the SEP’s in (48) (cf. (49)) as follows:

(1)

∂
−1
((1β)

Φ iβ

(1α)

Ψ1

)
=

(αβ)

Φ iβ ,
(1)

∂
−1
((1)

F b

(1α)

Ψ1

)
=

(α)

F b ,
(1)

∂
−1
((1)

F b

(1α)

Ψ jα

)
=

(α)

∂
jα−1

(α)

F b + . . . (50)

where α = 2, . . . , k, jα = 1, . . . , nα, β = k + 1, . . . , N , iβ = 1, . . . , nβ and b = 1, . . . ,m, and where
the dots in second Eqs.(50) indicate terms with lower derivatives on the corresponding EF’s which
cancel in the determinant. Therefore, the Wronskian-type determinant on the r.h.s. of Eq.(48)
together with (50) acquires the form of a multiple Wronskian, generalizing the double Wronskians
of the first ref.[12]. Let us recall that all entries in the multiple Wronskian (48)–(50) are (derivatives
of) EF’s and adjoint EF’s of the respective initial KPα subsystems (26). In the case of “free” initial

point on the DB orbit we have:
(α)

∂s
(α)

Fb= (
(α)

∂1)s
(α)

Fb ,
(α)

∂s
(αβ)

Φi = (
(α)

∂1)s
(αβ)

Φi and
(αβ)

Φi = (−
(β)

∂1)i−1
(αβ)

Φ1 .
As an example let us consider the general DB solution (48) in the case N = 2 and with a “free”

initial τ (0;0) = 1 :

τ (−n;m) = (−1)n−1 det

∥∥∥∥∥ ∂a−1Fb ∂a−1Fm−n+d

∂̄c−1F̄b ∂̄c−1F̄m−n+d

∥∥∥∥∥ , a, b=1, . . . ,m− n ; c, d=1, . . . , n (51)

where Fb, F̄b are arbitrary free EF’s ofKP1 andKP2 one-component sub-hierarchies of two-component

KP hierarchy, respectively:
(−)

F b=
∫
dλ

(−)
ϕ b (λ) eξ(

(−)

t ,λ). The tau-functions (51), taking into account
(24), provide the following series of Wronskian solutions for DS system (13):

Q(−n;m) = 4∂2
X ln τ (−n;m) , Φ

(−n;m)
1 =

τ (−n+1;m)

τ (−n;m)
, Ψ

(−n;m)
1 =

τ (−n−1;m)

τ (−n;m)
(52)

In the particular case m = 2n and taking special forms of the spectral densities of the pertinent

EF’s in (51)
(−)
ϕ b (λ)=

∑2n
a=1

(−)
c baδ (λ− λa) with constant coefficients

(−)
c ba, the series (52) with (51)

contains the well-known n2 (multi-)dromion solutions [13] in the double-Wronskian form given in
the first ref.[12] (after making appropriate choice for the constant parameters in order to ensure
reality properties).

More detailed analysis of the new series of multiple-Wronskian solutions (46)–(50) ofN -component
KP hierarchies, in particular, how other known soliton-type solutions are fitting there, will be given
elsewhere2.

6. Conclusions
In the present note we have shown that, given an ordinary one-component KP hierarchy KP1, we

can always construct a N -component matrix KP hierarchy, embedding the original one, in the fol-

lowing way. We choose N−1 infinite sets
{(1α)

Φk ,
(1α)

Ψk

}∞
k=1

, α=2, . . . , N , of (adjoint) EF’s of the initial

2Let us note that our multiple-Wronskian DB orbit differs from the DB orbit generated via matrix EF’s [9] within
Sato matrix pseudo-differential operator formulation. The latter cannot be written compactly in a Wronskian form.
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KP1 which we use to construct an infinite-dimensional abelian algebra of additional (“ghost”) sym-
metries (25)–(28),(31). The one-component KP hierarchy equipped with such additional symmetry
structure turns out to be equivalent to the standard N -component matrix KP hierarchy. Namely,
with the help of a subset of the “ghost” symmetry generating (adjoint) EF’s of KP1 we can define

new tau-functions ταβ = τ εαβ
(1)

∂−1
((1β)

Φ1

(1α)

Ψ1

)
(cf. (24),(32)) with α 6= β , α, β = 1, . . . , N , which

together with τ (the tau-function of the initial KP1 hierarchy) satisfy Hirota bilinear identities of
N -component matrix KP hierarchy (29).

Furthermore, we have shown that there exists a special non-standard Darboux-Bäcklund orbit
of the initial KP1 hierarchy (Section 4), which preserves the above mentioned additional (“ghost”)
symmetry structure and which thereby generates DB transformations of the whole N -component
matrix KP hierarchy. This fact allows to use the well-known DB techniques within the context
of the ordinary scalar KP subsystem KP1 to generate soliton-like tau-function solutions of all
higher N -component KP hierarchies which take the form of multiple Wronskians (Section 5). In
particular, we find in this way new series of multiple-Wronskian solutions to well-known systems
of integrable nonlinear soliton equations contained within the N -component matrix KP hierarchy:
Davey-Stewartson system (for N = 2, containing the previously obtained dromion solutions) and
N ′-wave system (for N ≥ 3).
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